EE3054 - Homework 5 - Due Oct. 7 2005

1. Find the inverse z-transforms of the following:
 (a) \(\frac{z}{z^2} \) with ROC \(2 < |z| < \infty \)
 (b) \(\frac{z}{z-2} \) with ROC \(0 < |z| < 2 \)
 (c) \(\frac{3}{1-2.5z^{-1}+z^{-2}} \) with ROC \(0.5 < |z| < 2 \).

2. Mr. Rich opens a savings bank account on January 1, 2005 with an initial deposit of $10000. The interest rate is 1%/month computed based on the amount of money in the account on the fifteenth day of the month. Mr. Rich withdraws $500 from the bank account on the last day of each month. How much money is in the bank account on January 1, 2006? Is this a BIBO stable system?

3. A numerical method to approximately solve differential equations is to discretize them by approximating \(\frac{dy}{dt} \) with a finite difference, i.e.,

 \[
 \frac{dy(nT_s)}{dt} \approx \frac{y(nT_s) - y((n-1)T_s)}{T_s} \tag{1}
 \]

 where \(T_s \) is the sampling period. \(y(nT_s) \) which is the value of the continuous-time signal \(y(t) \) at time \(nT_s \) forms the \(n^{th} \) sample of the associated discrete-time signal \(y[n] \triangleq y(nT_s) \).

 Given the differential equation

 \[
 \frac{d}{dt} y = -y + x \tag{2}
 \]

 with initial condition \(y(0) = 1 \) and input signal \(x(t) = t \), we want to find the value of the output signal \(y(t) \) at time \(t = 10 \) seconds. Do this via the following steps.

 (a) Pick the sampling period to be \(T_s = 0.01 \) seconds. Show that finding \(y(t) \) at \(t = 10 \) seconds is equivalent to finding \(y[n] \) at \(n = 10 \ast 100 \).

 (b) Find the associated discrete-time difference equation using (1).

 (c) Show that the given initial condition and input signal are equivalent to \(y[0] = 1 \) and \(x[n] = 0.01n \). Remember that, by definition, \(x[n] \triangleq x(nT_s) \).

 (d) Solve the difference equation found in part (b) with initial condition \(y[0] = 1 \) and the input signal \(x[n] = 0.01n \). Find \(y[n] \) at \(n = 10 \ast 100 \). This value is equal to the value of \(y(t) \) at time \(t = 10 \) seconds.