1. (8 points) Consider the system

\[y[n] = y[n-1] + y[n-2] + x[n]. \]

(a) Is this system LTI? Is this system FIR or IIR? Briefly justify your answers.

(b) Find the transfer function \(H(z) \) of the system. Find the poles of the system.

Solution:

(a) We know that an LTI IIR system is of the general form

\[y[n] = \sum_{l=1}^{N} a_l y[n-l] + \sum_{k=0}^{M} b_k x[n-k]. \]

Hence, the given system is of the form of an LTI IIR system. Note that the right hand side of the given difference equation has both \(x \) and \(y \) terms. Therefore, the given system is LTI and IIR.

(b) Taking the \(z \)-transform of both sides of the difference equation, we get

\[
Y(z) = z^{-1}Y(z) + z^{-2}Y(z) + X(z). \quad (1)
\]

Hence, the transfer function is

\[
H(z) = \frac{Y(z)}{X(z)} = \frac{1}{1 - z^{-1} - z^{-2}}. \quad (2)
\]

The poles of the system are the roots of the quadratic equation

\[1 - z^{-1} - z^{-2} = 0. \]

Hence, the poles of the system are \(-0.618\) and \(1.618\).
2. (10 points) Consider the cascade interconnection of Systems 1 and 2 shown below.

The impulse response of System 1 is given to be \(h_1[n] = 2^n u[n] \) and the difference equation of System 2 is given to be \(y[n] = y_1[n] + y_1[n - 1] \) where, as shown in the figure, \(y_1[n] \) is the input signal for System 2.

(a) Find the transfer function of the overall system.
(b) Find the impulse response of the overall system.

Solution:

(a) Since the impulse response of System 1 is given to be \(h_1[n] = 2^n u[n] \), the transfer function of System 1 is

\[
H_1(z) = \sum_{n=-\infty}^{\infty} h_1[n] z^{-n} = \sum_{n=0}^{\infty} 2^n z^{-n} = \frac{1}{1 - 2z^{-1}}.
\]

(3)

\(H_1(z) \) can also be immediately obtained from the general result that the \(z \)-transform of the signal \(\alpha^n u[n] \) is \(\frac{1}{1 - \alpha z^{-1}} \).

Since the difference equation of System 2 is given to be \(y[n] = y_1[n] + y_1[n - 1] \), the transfer function of System 2 is \(H_2(z) = 1 + z^{-1} \).

Hence, the transfer function of the overall system (which is the cascade interconnection of System 1 and System 2) is

\[
H(z) = H_1(z)H_2(z) = \frac{1 + z^{-1}}{1 - 2z^{-1}}.
\]

(4)

(b) The impulse response \(h[n] \) of the overall system is the inverse \(z \)-transform of \(H(z) \). Rewriting \(H(z) \) as

\[
H(z) = -0.5 + \frac{1.5}{1 - 2z^{-1}}.
\]

(5)
the impulse response $h[n]$ is obtained to be

$$h[n] = -0.5\delta[n] + 1.5(2)^n u[n]. \quad (6)$$

Note that both System 1 and System 2 are causal. Hence, the overall system is causal. Therefore, we have taken the causal inverse z-transform to find $h[n]$ above.

The impulse response can also be obtained more easily by just using the definition that the impulse response is the response of the system to a unit impulse. Hence, if the input signal $x[n]$ is taken to be the unit impulse $u[n]$, then the output of System 1 is $h_1[n] = 2^nu[n]$. Hence, the input to System 2 is $2^n u[n]$ so that (from the given difference equation of System 2), the output of System 2 is

$$h[n] = 2^n u[n] + 2^{n-1} u[n-1]. \quad (7)$$

Note: Using $u[n-1] = u[n] - \delta[n]$, you can show that the two answers we got above for $h[n]$ in (6) and (7) are identical.

3. (12 points) Given a function $H(e^{j\omega}) = \tan(\omega)$, we want to compute its inverse DTFT $h[n]$. Find $h[n]$ using the following steps:

(a) Show that $\tan(\omega) = \frac{e^{j\omega} - e^{-j\omega}}{j(e^{j\omega} + e^{-j\omega})}$. Hence, show that $H(z) = \frac{z - z^{-1}}{j(z + z^{-1})}$.

(b) Show that $H(z)$ can be rewritten as

$$H(z) = \frac{1}{j} \left[-1 + \frac{1}{1 + jz^{-1}} + \frac{1}{1 - jz^{-1}} \right].$$

(c) Show that

$$h[n] = \frac{1}{j} (\delta[n] + (-j)^n u[n] + (j)^n u[n]).$$

Solution:

(a) We know that $\cos(\omega) = \frac{1}{2} (e^{j\omega} + e^{-j\omega})$ and $\sin(\omega) = \frac{1}{2j} (e^{j\omega} - e^{-j\omega})$. Hence,

$$\tan(\omega) = \frac{\sin(\omega)}{\cos(\omega)} = \frac{e^{j\omega} - e^{-j\omega}}{j(e^{j\omega} + e^{-j\omega})}. \quad (8)$$

Substituting z for $e^{j\omega}$, we get $H(z) = \frac{z - z^{-1}}{j(z + z^{-1})}$. 3
(b) Multiplying the numerator and denominator of $H(z)$ by z^{-1}, we get $H(z) = \frac{1 - z^{-2}}{1 + z^{-2}}$. Dividing the numerator by the denominator, we get

$$H(z) = \frac{1}{j} \left[-1 + \frac{2}{1 + z^{-2}} \right]. \quad (9)$$

The poles of $H(z)$, i.e., the roots of the equation $1 + z^{-2} = 0$, are $+j$ and $-j$. Hence, the partial fraction expansion of the term $\frac{2}{1 + z^{-2}}$ will be of the form

$$\frac{2}{1 + z^{-2}} = \frac{A_1}{1 + jz^{-1}} + \frac{A_2}{1 - jz^{-1}}. \quad (10)$$

To find A_1 and A_2, multiply both sides of (10) by $(1 + z^{-2})$ and equate the constant terms and the coefficients of z^{-1} on both sides of the resulting equation. This gives the two equations

$$A_1 + A_2 = 2$$
$$-jA_1 + jA_2 = 0. \quad (11)$$

Solving, we get $A_1 = 1$ and $A_2 = 1$. Hence, from (9),

$$H(z) = \frac{1}{j} \left[-1 + \frac{1}{1 + jz^{-1}} + \frac{1}{1 - jz^{-1}} \right]. \quad (12)$$

(c) To find $h[n]$, take the (causal) inverse z-transform of $H(z)$. Hence,

$$h[n] = \frac{1}{j} \left((-\delta[n] + (-j)^n u[n] + (j)^n u[n]) \right). \quad (13)$$

4. (12 points) You are given a system with difference equation

$$y[n] = 0.5y[n-1] + x[n].$$

(a) Find the frequency response $H(e^{j\omega})$ of the system. Find the magnitude response $|H(e^{j\omega})|$ and the phase response $\angle H(e^{j\omega})$.

(b) If the input signal is $x[n] = 2 \sin(\frac{\pi}{3} n + \frac{\pi}{3}) u[n]$, find the steady-state output signal.
Solution:

(a) Taking the z-transform of both sides of the given difference equation, we get

$$Y(z) = 0.5z^{-1}Y(z) + X(z). \quad (14)$$

Hence, the transfer function of the system is

$$H(z) = \frac{1}{1 - 0.5z^{-1}}. \quad (15)$$

Substituting $z = e^{j\omega}$, the frequency response of the system is

$$H(e^{j\omega}) = \frac{1}{1 - 0.5e^{-j\omega}}. \quad (16)$$

From $H(e^{j\omega})$, the magnitude response and the phase response can be calculated as

$$|H(e^{j\omega})| = \frac{1}{\sqrt{(1 - 0.5\cos(\omega))^2 + 0.25\sin^2(\omega)}} \quad (17)$$

$$\angle H(e^{j\omega}) = -\tan^{-1}\left(\frac{0.5\sin(\omega)}{1 - 0.5\cos(\omega)}\right). \quad (18)$$

(b) The input signal is given to be $x[n] = 2\sin(\frac{\pi}{3}n + \frac{\pi}{3})u[n]$. The input signal can be rewritten as

$$x[n] = \frac{2}{2j} \left[e^{j\left(\frac{\pi}{3}n + \frac{\pi}{3}\right)} - e^{-j\left(\frac{\pi}{3}n + \frac{\pi}{3}\right)} \right] u[n]. \quad (19)$$

Evaluating (17) and (18) at $\omega = \frac{\pi}{3}$ and $\omega = -\frac{\pi}{3}$ gives

$$|H(e^{j\frac{\pi}{3}})| = 1.1547 \quad \angle H(e^{j\frac{\pi}{3}}) = -\frac{\pi}{6}$$

$$|H(e^{-j\frac{\pi}{3}})| = 1.1547 \quad \angle H(e^{-j\frac{\pi}{3}}) = \frac{\pi}{6}. \quad (20)$$

Hence, from (19), the output signal at steady-state is

$$y[n] = \frac{2}{2j} \left[|H(e^{j\frac{\pi}{3}})| e^{j\angle H(e^{j\frac{\pi}{3}})} e^{j\left(\frac{\pi}{3}n + \frac{\pi}{3}\right)} - |H(e^{-j\frac{\pi}{3}})| e^{j\angle H(e^{-j\frac{\pi}{3}})} e^{-j\left(\frac{\pi}{3}n + \frac{\pi}{3}\right)} \right] u[n]$$

$$= \frac{2}{2j} \left[1.1547 e^{-j\frac{\pi}{3}} e^{j\left(\frac{\pi}{3}n + \frac{\pi}{3}\right)} - 1.1547 e^{j\frac{\pi}{3}} e^{-j\left(\frac{\pi}{3}n + \frac{\pi}{3}\right)} \right] u[n]$$
which can be simplified to

\[
y[n] = (2)(1.1547) \sin\left(\frac{\pi}{3}n + \frac{\pi}{3} - \frac{\pi}{6}\right) = 2.3094 \sin\left(\frac{\pi}{3}n + \frac{\pi}{6}\right).
\]

Equivalently, noting that the frequency of the input signal is \(\frac{\pi}{3}\) and that, from (17) and (18), we expect a magnitude gain of \(|H(e^{j\frac{\pi}{3}})| = 1.1547\) and a phase shift of \(\angle H(e^{j\frac{\pi}{3}}) = -\frac{\pi}{6}\), the output signal is steady-state is

\[
y[n] = 2|H(e^{j\frac{\pi}{3}})| \sin\left(\frac{\pi}{3}n + \frac{\pi}{3} + \angle H(e^{j\frac{\pi}{3}})u[n]\right)
\]

\[
= (2)(1.1547) \sin\left(\frac{\pi}{3}n + \frac{\pi}{3} - \frac{\pi}{6}\right) = 2.3094 \sin\left(\frac{\pi}{3}n + \frac{\pi}{6}\right).
\]

5. (8 points) The step response of an unknown system is observed to be \((\delta[n] + \delta[n - 1] + \delta[n - 2])\). Find the impulse response of the system (\textit{Hint:} the easy way to do this is by plotting \(u[n]\) and \(u[n - 1]\)). Also, find the equation relating the input signal \(x[n]\) and the output signal \(y[n]\) of the system.

Solution: In this problem, we are given that the step response is

\[
y_u[n] = \delta[n] + \delta[n - 1] + \delta[n - 2]. \quad (21)
\]

We know that (you can easily verify this by plotting \(u[n]\) and \(u[n - 1]\))

\[
\delta[n] = u[n] - u[n - 1]. \quad (22)
\]

Hence, the impulse response is

\[
h[n] = y_u[n] - y_u[n - 1]
\]

\[
= (\delta[n] + \delta[n - 1] + \delta[n - 2]) - (\delta[n - 1] + \delta[n - 2] + \delta[n - 3])
\]

\[
= \delta[n] - \delta[n - 3]. \quad (23)
\]

Given an arbitrary input signal \(x[n]\), the corresponding output signal is obtained as \(y[n] = x[n] * h[n] = x[n] * (\delta[n] - \delta[n - 3]) = x[n] - x[n - 3]\). Hence, the equation relating the input signal \(x[n]\) and the output signal \(y[n]\) of the system is

\[
y[n] = x[n] - x[n - 3]. \quad (24)
\]