Recipes for Pole Placement

Task: Consider an \(n^{th} \) order linear controllable single-input (i.e., \(u \) being scalar) system \(\dot{x} = Ax + Bu \). With the linear state feedback \(u = Kx \), the closed-loop system is \(\dot{x} = (A + BK)x \). Given a set of \(n \) desired eigenvalues \(p_1, \ldots, p_n \) for the closed-loop system matrix \(A + BK \), find a \(K \) which places the eigenvalues of \(A + BK \) at those desired values.

You can use either of the two recipes given below for this task.

Recipe 1:

1. Find the controllability matrix \(\Gamma_n = [B, AB, A^2B, \ldots, A^{n-1}B] \).
2. Find the characteristic polynomial \(p(\lambda) = \lambda^n + a_{n-1}\lambda^{n-1} + \ldots + a_1\lambda + a_0 \) of the matrix \(A \).
3. Find the column vector \(q_1 = (\Gamma_n^T)^{-1}e_n \) where \(e_n = [0, \ldots, 0, 1]^T \) is the \(1 \times n \) column vector with 1 as the \(n^{th} \) element and zero everywhere else. Define

\[
Q = \begin{bmatrix}
q_1^T \\
q_1^T A \\
q_1^T A^2 \\
\vdots \\
q_1^T A^{n-1}
\end{bmatrix}.
\]

If we perform the coordinate transformation \(\hat{x} = Qx \), then in the new coordinate frame, the system is in controller canonical form.

4. Find the characteristic polynomial corresponding to the desired eigenvalues, i.e., find \((\lambda + p_1)(\lambda + p_2)\ldots(\lambda + p_n) \). Denote this characteristic polynomial by \(\lambda^n + d_{n-1}\lambda^{n-1} + \ldots + d_1\lambda + d_0 \).
5. Let \(\hat{k}_i = a_{i-1} - d_{i-1}, \ i = 1, \ldots, n \). Define \(\hat{K} = [\hat{k}_1, \ldots, \hat{k}_n] \). Then, \(K = \hat{K}Q \).

Recipe 2:

1. Find the characteristic polynomial \(p(\lambda) = \lambda^n + a_{n-1}\lambda^{n-1} + \ldots + a_1\lambda + a_0 \) of the matrix \(A \).
2. Define

\[
p_1(\lambda) = \lambda^{n-1} + a_{n-1}\lambda^{n-2} + \ldots + a_2\lambda + a_1 \\
p_2(\lambda) = \lambda^{n-2} + a_{n-1}\lambda^{n-3} + \ldots + a_3\lambda + a_2
\]
3. Define $T = [p_1(A)B, p_2(A)B, \ldots, p_n(A)B]$ and $Q = T^{-1}$. If we perform the coordinate transformation $\hat{x} = Qx$, then in the new coordinate frame, the system is in controller canonical form.

4. Find the characteristic polynomial corresponding to the desired eigenvalues, i.e., find $(\lambda + p_1)(\lambda + p_2) \ldots (\lambda + p_n)$. Denote this characteristic polynomial by $\lambda^n + d_{n-1}\lambda^{n-1} + \ldots + d_1\lambda + d_0$.

5. Let $\hat{k}_i = a_{i-1} - d_{i-1}$, $i = 1, \ldots, n$. Define $\hat{K} = [\hat{k}_1, \ldots, \hat{k}_n]$. Then, $K = \hat{K}Q$.

$$
\begin{align*}
p_3(\lambda) & = \lambda^{n-3} + a_{n-1}\lambda^{n-4} + \ldots + a_4\lambda + a_3 \\
\vdots & \\
p_{n-1}(\lambda) & = \lambda + a_{n-1} \\
p_n(\lambda) & = 1.
\end{align*}
$$