1. Which of the following functions are positive definite functions (i.e., \(f(0) \) is zero and \(f(x) \) is positive for any non-zero \(x \))? Justify.

 (a) \(f(x) = x^2 + x^4 \) for \(x \in \mathbb{R} \)

 (b) \(f(x) = x^4 e^x \) for \(x \in \mathbb{R} \)

 (c) \(f(x) = (x^T P x)^2 \) for \(x \in \mathbb{R}^2 \) and \(P = \begin{bmatrix} 1 & 1 \\ 1 & 3 \end{bmatrix} \).

2. Consider the system

\[
\begin{align*}
\dot{x}_1 &= -x_1 - x_1^3 + 2x_2 \\
\dot{x}_2 &= -2x_2 - x_1.
\end{align*}
\]

Using the Lyapunov function \(V = \frac{1}{2}(x_1^2 + x_2^2) \), what can you say about the stability properties of this system?

3. Consider the system

\[
\dot{x} = -x^3 + x^5
\]

(a) Find the equilibrium point(s) of this system.

(b) Is this system globally asymptotically stable to the origin (the point \(x = 0 \)), i.e., do trajectories starting from any initial value of \(x \) converge to the origin? Justify.

(c) Is this system locally asymptotically stable to the origin, i.e., do trajectories starting from initial values of \(x \) in some small neighborhood of the origin converge to the origin? Justify.

(d) Using \(V = \frac{1}{2}x^2 \) and noting for what values of \(x \) would \(\dot{V} \) be negative, estimate the region of attraction of the system to the origin.